MOCK EXAM 10

MATHEMATICS Compulsory Part PAPER 1


Question-Answer Book

 $(2\frac{1}{4} \text{ hours})$

This paper must be answered in English

INSTRUCTIONS

- 1. Write your name in the space provided on Page 1.
- 2. This paper consists of **THREE** sections, A(1), A(2), and B.
- 3. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name on the graph paper and supplementary answer sheets.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Simplify $(\alpha^2 \beta)(\alpha^3 \beta^{-2})^{-4}$ and express your answer with positive indices.	(3 marks)
X	
Make b the subject of the formula $\frac{2}{a} - \frac{3}{b} = 4$.	(3 marks

2

Answers written in the margins will not be marked.

SECTION A(1) (35 marks)

<u> </u>	T
≺ .	 Factorize

(a)
$$x^2 + xy - 20y^2$$
,

(b)
$$x^2 + xy - 20y^2 - 8x + 32y$$

(3 marks)

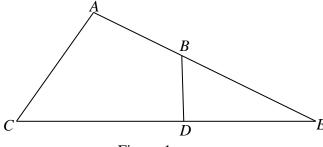
(a) Find the range of values of x which satisfy both $\frac{5-x}{3} > 2x + 1$ and $3x + 5 \ge 0$. 4.

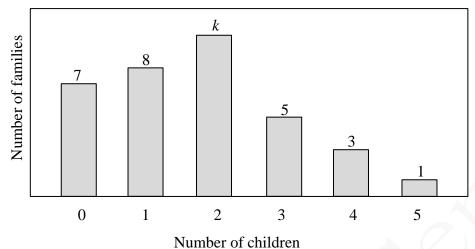
- (b) Write down the greatest integer satisfying both inequalities in (a). (4 marks)

		is 4 times that owned by a boy. If the g	
mar	bles to the boy, then the number of m	narbles owned by the boy is 3 times that	at owned by the girl.
Find	d the total number of marbles owned	by the boy and the girl.	(4 marks
			-
	marked price of a ring is \$780. It is a cost.	given that the marked price of the ring	is 30% higher than
		given that the marked price of the ring	is 30% higher than
the o	cost.		
the (a)	Find the cost of the ring.		
the (a)	Find the cost of the ring.		
the (a)	Find the cost of the ring.		
the (a)	Find the cost of the ring.		is 30% higher than (4 marks
the (a)	Find the cost of the ring.		
the (a)	Find the cost of the ring.		
the (a)	Find the cost of the ring.		

B is $6\sqrt{2}$. Find			
(a) $\angle AOB$,			
(b) r,			
(c) the area of Δ	OAB.		(4 mark
			~ (7)
		(
		. (7)	
)	
			
h			

8. In Figure 1, ABE and CDE are straight lines. It is given that $\angle ACE = \angle DBE$.




Figure 1

(a) Prove that $\triangle ACE \sim \triangle DBE$.

Answers written in the margins will not be marked.

- (b) It is given that AC = 40 cm, AE = 75 cm, CE = 85 cm and DE = 45 cm.
 - (i) Is $\triangle ACE$ a right-angled triangle? Explain your answer.

(11) Find	the area of the quad	irilateral ACDB.			(5 mark
		•	(0)	7	
		A			
			/		

If a family is randomly selected from the families, then the probability that the selected family has less than 3 children is $\frac{3}{4}$.

(a) Find k.

Answers written in the margins will not be marked

(b) Write down the median, the inter-quartile range and the standard deviation of the distribution.

(5 marks)

SE	CTI	ON A(2) (35 marks)					
10.		It is given that $g(x)$ is a partly constant and partly varies as $(x-5)^2$. Suppose that $g(2) = 10$ and					
	g(7)=0.						
	(a)	Find g(0).	(3 marks)				
	(b)	Denote the graph of $y = g(x) - 10$ by G .					
		(i) Write down the <i>y</i> -intercept of <i>G</i> .					
		(ii) Find the <i>x</i> -intercept(s) of <i>G</i> .	(3 marks)				
			/				
	9						
)					

11.	The	heights of a	group of s	tudents (i	n cm) are	shown bel	ow:			
	141	142	144	145	146	150	152	155	158	162
	164	166	168	170	170	171	173	174	174	175
	(a)	Write down	the mean,	, the medi	an and the	range of t	he heights	of the stu	dents.	(3 marks)
	(b)	Two student	s join the	group. It	is found th	at the mea	an of the h	eights of t	he new gr	oup is
		decreased by	y 1 cm wh	nile the rai	nge of the	heights of	the new g	roup is inc	creased by	1 cm. Find
		the possible	heights of	f the two	students.					(4 marks)
										
						. (
			7							

9

12.	Let	$f(x) = 2x^3 + kx^2 + 5x + 4$, where k is a constant. It is given that $f(x) = (2x + 1)(ax^2 + bx + c)$,
	whe	are a , b and c are constants.
	(a)	Find a , b and c . (4 marks)
	(b)	Someone claims that all the roots of the equation $f(x) = 0$ are real numbers. Do you agree?
		Explain your answer. (3 marks)

10

Answers written in the margins will not be marked.

-	
-	
-	
-	
-	
-	
-	_ // \ /
-	
-	
-	
-	
-	
_	
_	
-	
-	
-	
-	
-	
-	
-	
-	

3.		coordinates of the points E , F and G are $(-5, 6)$, $(2, 9)$ and $(7, -3)$ respective	ely. The circle C
	pas	ses through E and the centre of C is G .	
	(a)	Find the equation of <i>C</i> .	(2 marks)
	(b)	Prove that F lies inside C .	(2 marks)
	(c)	Let H be a moving point on C . When H is closest from F ,	
		(i) describe the geometric relationship between F , G and H ;	
		(ii) find the equation of the straight line which passes through F and H .	(3 marks)
	-		
	-		

	X
•	6/\
X	
()	

13

14.	The base radius of the solid right circular cylinder <i>X</i> and the base radius of the solid right circular			
	cone <i>Y</i> are equal. The heights of <i>X</i> and <i>Y</i> are 24 cm and 48 cm respectively. The volume of the solid right circular cone <i>Z</i> is equal to the sum of the volume of <i>X</i> and the volume of <i>Y</i> . The base radius of			
	Z is equal to the base diameter of X. A craftsman finds that the volume of Y is $6400\pi\mathrm{cm}^2$.			
	(a)	Find the base radius of <i>Y</i> . (2 mark	s)	
	(b)	Are Y and Z similar? Explain your answer. (3 mark	(s)	
	(b)	The craftsman claims that the sum of the curved surface area of X and the curved surface area	a	
		of Y is equal to the curved surface area of Z. Do you agree? Explain your answer. (3 mark	s)	
			-	
			-	
			_	
			_	
			-	
			-	
			-	
			-	
	_	/	-	
			_	

	/
A	-

SECTION B (35 marks)			
15.	A q	ueue is randomly formed by 6 boys and 4 girls.	
	(a)	How many different queues can be formed?	(1 mark)
	(b)	Find the probability that no girls are next to each other in the queue.	(3 marks)
			
	_		
	_		
	_		

16.	6. The straight lines L_1 and L_2 are perpendicular to each other. The <i>y</i> -intercept of L_1 is 5. It is given that L_1 and L_2 intersect at the point (12, -4). Let <i>R</i> be the region (including the boundary) bounded by L_1 , L_2 and the <i>y</i> -axis.		
	(a)	It is given that <i>R</i> represents the solution of a system of inequalities. Find the system of inequalities. (3 marks	
	(b)	Find the largest value of $4x - 6y$, where (x, y) is a point lying in R . (2 marks	
			9
			0
		X O '	

17

17. The general term of an arithmetic sequence is denoted by $A(n)$ where n is a posit	ive integer. It is
given that $A(3) = 22$ and $A(10) = 50$.	
(a) Find A(1).	(2 marks)
(b) Suppose that $log_3B(n) = A(n)$ for any positive integer n .	
Find the greatest value of k such that $\log_{27}[B(1)B(2)B(k)] < 2023$.	(5 marks)
)
\ /)	

18

_	
_	
_	Ar
	ısw
_	ers
	wr
	ittei
	ı in
	the
_	m
	argi
	he margins v
	will
	will not l
_	t be
	be marked.
	arke
	d.
_	
_	
_	

- 18. (a) A thin metal sheet ABCD is in the shape of a quadrilateral. It is given that AB = 50 cm, BC = CD, $\angle BAD = 40^{\circ}$, $\angle ABC = 130^{\circ}$, $\angle BCD = 100^{\circ}$ and $\angle ADC = 90^{\circ}$. Find CD. (2 marks)
 - (b) The metal sheet ABCD described in (a) is now given. Let E be a point lying on AD such that BE is perpendicular to AD. The metal sheet is folded along BE such that AE is perpendicular to the plane BCDE. Three thin triangular metal sheets are placed to this folded metal sheet to form a pyramid (see Figure 2).

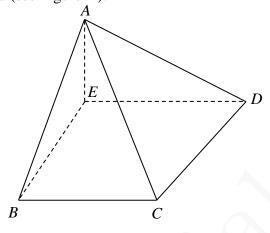


Figure 2

- Find $\angle BAC$. (i)
- (ii) Does the angle between the plane ABC and the plane BCDE exceed 50°? Explain your answer. (5 marks)

20

Answers written in the margins will not be marked.

19.	9. The coordinates of the centre of the circle C are (16, 25). Denote the radius of C by r . Let L be the		
	straight line $12x + ky - 148 = 0$, where k is a constant. It is given that L is a tangent to C.		
	(a)	Fine	d the equation of C in terms of r . Hence, express r^2 in terms of k . (4 marks)
	(b)	L pa	asses through the point $D(-11, 56)$.
		(i)	Find r.
		(ii)	It is given that L cuts the x -axis at the point E . Let F be a point such that C is the inscribed
			circle of $\triangle DEF$. Is $\triangle DEF$ an obtuse-angled triangle? Explain your answer. (8 marks)

 G

END OF PAPER
 END OF TALER