### **MOCK EXAM 1**

# MATHEMATICS Compulsory Part PAPER 1

## **Question-Answer Book**

 $(2\frac{1}{4} \text{ hours})$ 

This paper must be answered in English

#### **INSTRUCTIONS**

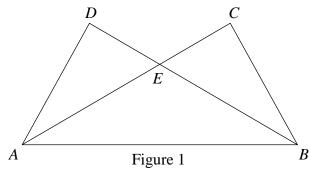
- 1. Write your name in the space provided on Page 1.
- 2. This paper consists of **THREE** sections, A(1), A(2), and B.
- 3. Attempt **ALL** questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name on the graph paper and supplementary answer sheets.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 7. The diagrams in this paper are not necessarily drawn to scale.



## SECTION A(1) (35 marks)

1. Simplify  $\frac{2}{3x+5} + \frac{6}{2-9x}$ . (3 marks)

2. Factorize


Answers written in the margins will not be marked.

- (a)  $4x^2 + 20xy + 25y^2$ ,
- (b)  $4x^2 + 20xy + 25y^2 8x 20y$ . (3 marks)

| Make x the subject of the formula $Ax = (6x - 5B)C$ .        | (3 marks) |
|--------------------------------------------------------------|-----------|
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
| Consider the compound inequality                             |           |
| $4(x-5) \le 35 - x \text{ or } x > 6$ (*).                   |           |
| (a) Solve (*).                                               |           |
| (b) Write down the smallest positive integer satisfying (*). | (4 marks) |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
| ——— <del>—</del>                                             |           |
| ·                                                            |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |

|     |                                                                                                                                                                       | Mock exam pape     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Let | a, b and c be non-zero numbers such that $5a = 2c$ and $\frac{5a+4b}{a+3b} = 2$ . Find $\frac{9a+6c-1}{6c-1}$                                                         | $\frac{4b}{10a}$ . |
|     |                                                                                                                                                                       | (4 marks)          |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
|     | <del></del>                                                                                                                                                           |                    |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
|     | selling price of a bag is 30% higher than a jacket while the selling price of the er than a pair of shoes. It is given that the selling price of the jacket is \$280. | e jacket is 30%    |
| (a) | Find the selling price of the bag.                                                                                                                                    |                    |
| (b) | Which one has the highest selling price? Explain your answer.                                                                                                         | (4 marks)          |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
|     |                                                                                                                                                                       |                    |
| -   |                                                                                                                                                                       |                    |

8. In Figure 1, *E* is the point of intersection of *AC* and *BD*. It is given that  $\angle ACB = \angle ADB = 90^{\circ}$  and AD = BC.



- (a) Prove that  $\triangle ABC \cong \triangle BAD$ .
- (b) If AD = 80 cm and DE = 60 cm, find the area of  $\triangle AEB$ .

(5 marks)

Answers written in the margins will not be marked.

9. The table below shows the distribution of the number of pens owned by a class of students

| Number of pens     | 4 | 5  | 6 | 7  | 8 | 9 |
|--------------------|---|----|---|----|---|---|
| Number of students | 4 | 16 | 9 | 10 | k | 2 |

If a student is randomly selected from the class, then the probability that the student owns more than 5 pens is  $\frac{5}{9}$ .

(a) Find k.

Answers written in the margins will not be marked.

(b) Write down the mean, the median and the mode of the distribution.

(5 marks)

| SE  | CTI   | ON A(2) (35 marks)                                                                                                                                               |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       |                                                                                                                                                                  |
| 10. | It is | given that $f(x)$ is partly constant and partly varies as $x$ . Suppose that $f(-2) = -16$ and $f(5) = 12$ .                                                     |
|     | (a)   | Find $f(x)$ . (3 marks)                                                                                                                                          |
|     | (b)   | Let $g(x) = xf(x) + k$ , where $k$ is a real constant. If all the roots of the equation $g(x) = 0$ are real numbers, find the range of values of $k$ . (3 marks) |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       | • • • • • • • • • • • • • • • • • • • •                                                                                                                          |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |
|     |       |                                                                                                                                                                  |

| 141 | 142          | 144         | 145         | 146        | 150        | 152         | 155       | 158       | 162          |
|-----|--------------|-------------|-------------|------------|------------|-------------|-----------|-----------|--------------|
| 164 |              | 168         | 170         | 170        | 171        | 173         | 174       | 174       | 175          |
| (a) | Write down   |             |             |            |            |             |           |           | (3 marks     |
| (b) | Two studen   | ts join the | group. It i | s found th | at the mea | an of the h | eights of | the new g | roup is      |
| ` ' |              |             |             |            |            |             |           |           | y 1 cm. Find |
|     | the possible | heights of  | f the two s | students.  |            |             |           |           | (4 marks     |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            | •          |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            | ) /        |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             | <b>V</b>   |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |
|     |              |             |             |            |            |             |           |           |              |

| 12. | Den | ote the origin by $O$ .                                                                                                                                                                                                                                                                                                                                            |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) | A and B are points lying on the positive y-axis such that the y-coordinate of A is greater than the y-coordinate of B. A horizontal line which passes through B cuts the straight line $y = mx$ at the point C such that $AB = BC$ , where m is positive constant. Let D be a point such that $ABCD$ is square. Express the slope of $OD$ in terms of m. (3 marks) |
|     | (b) | The coordinates of points $M$ and $N$ are $(2, 6)$ and $(0, 10)$ respectively. Let $P$ and $Q$ be point                                                                                                                                                                                                                                                            |
|     |     | lying $OM$ and $MN$ respectively while $R$ and $S$ be points lying on the $y$ -axis. If the quadrilateral                                                                                                                                                                                                                                                          |
|     |     | PQRS is a square, find the y-coordinate of $P$ . (4 marks)                                                                                                                                                                                                                                                                                                         |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |
|     | 7   |                                                                                                                                                                                                                                                                                                                                                                    |
|     |     |                                                                                                                                                                                                                                                                                                                                                                    |

13. Figure 2 shows a frustum with the height of 8 cm. The radii of the upper surface and lower surface are in the ratio of 3:5 and the volume of the frustum is  $1176\pi$  cm<sup>3</sup>.

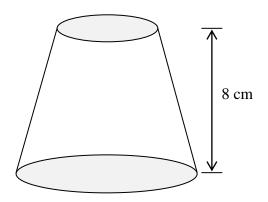



Figure 2

(a) Find the radius of the upper surface.

(3 marks)

(b) Someone claims that the curved surface area of the frustum is larger than  $250\pi$  cm<sup>2</sup>. Do you agree? Explain your answer. (4 marks)

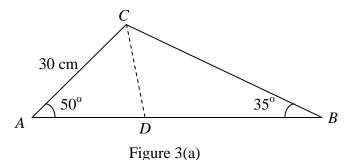
| <b>7</b> 57 |  |  |
|-------------|--|--|
|             |  |  |
|             |  |  |
|             |  |  |

|                | moek exam pap |
|----------------|---------------|
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
| ·              |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
| <del></del>    |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |
| <del>- y</del> |               |
|                |               |
|                |               |
|                |               |
|                |               |
|                |               |

| (a) | Wri   | ite down the value of $p$ .                                                                    | (1 mark)  |
|-----|-------|------------------------------------------------------------------------------------------------|-----------|
| (b) | It is | s given that $x - 3$ is a factor of $f(x)$ . When $f(x)$ is divided by $x - 1$ , the remainder | r is -60. |
|     | (i)   | Find $q$ and $r$ .                                                                             |           |
|     | (i)   | How many real roots does the equation $f(x) = 0$ have? Explain your answer.                    | (7 marks  |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |
| _   |       |                                                                                                |           |
|     |       | <del></del>                                                                                    |           |
|     |       |                                                                                                |           |
|     |       |                                                                                                |           |

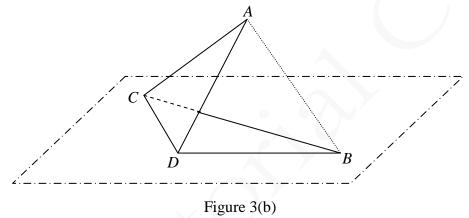
| тоск ехат рар |
|---------------|
|               |
|               |
|               |
|               |
|               |
| <br>          |
|               |
|               |
|               |
|               |
|               |
| <br>          |
|               |
| <br>          |
|               |
|               |
|               |
|               |
|               |
| <br>          |
|               |
|               |
| <br>          |
|               |
|               |
| <br>          |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |

| 5. It is given that log <sub>8</sub> y is a | linear function of $\log_4 x$ . Denote the graph of the linear fu | inction by L. |
|---------------------------------------------|-------------------------------------------------------------------|---------------|
| The slope of $L$ is 6 and                   | L passes through $(4, 25)$ . Express y in terms of x.             | (3 marks      |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
|                                             |                                                                   |               |
| \ <del></del>                               |                                                                   |               |
|                                             |                                                                   |               |


| (a) Find the probability the | nat exactly 2 comics are selected.  | (2 mar      |
|------------------------------|-------------------------------------|-------------|
| (b) Find the probability the | nat at least 2 comics are selected. | (2 mar      |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     | <del></del> |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
|                              |                                     |             |
| <u> </u>                     |                                     |             |
|                              |                                     |             |

| 17. Th | e coordinates of the points $Q$ and $R$ are $(1, 2)$ and $(4, -1)$ respectively.                               |
|--------|----------------------------------------------------------------------------------------------------------------|
| (a)    | Let $P$ be a moving point in the rectangular coordinate plane such that $PQ = PR$ . Denote the                 |
|        | locus of $P$ by $\Gamma$ .                                                                                     |
|        | (i) Describe the geometric relationship between $\Gamma$ and $QR$ .                                            |
|        | (ii) Find the equation of $\Gamma$ . (3 marks)                                                                 |
| (b)    | Let C be the circle which passes through $Q$ , $R$ and the point $(-8, -7)$ .                                  |
|        | (i) Find the equation of <i>C</i> .                                                                            |
|        | (ii) The coordinates of the point $U$ are $(-10, -12)$ . It is found that $U$ lies outside $C$ . $UV$ and $UV$ |
|        | are the tangents to $C$ at the points $V$ and $W$ respectively. Is the area of the circumcircle of             |
|        | $\triangle UVW$ greater than 100? Explain your answer. (5 marks)                                               |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |

| Answers                               |
|---------------------------------------|
| written in the margins will not be ma |
| n the m                               |
| argins '                              |
| will                                  |
| not                                   |
| be                                    |
| marked.                               |


| `        |                |
|----------|----------------|
|          |                |
|          |                |
|          |                |
|          |                |
| <u> </u> |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
| <u></u>  |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          | - <del>-</del> |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
|          |                |
| 1        |                |
|          |                |
| 1        |                |

18. Figure 3(a) shows a piece of triangular paper card ABC with AC = 30 cm,  $\angle CAB = 50^{\circ}$  and  $\angle CBA = 35^{\circ}$ . Let D be a point lying on AB such that  $\angle CDA = 80^{\circ}$ .



(a) Find BC and BD. (4 marks)

(b) The triangular paper card in Figure 3(a) is folded along *CD* such that  $\triangle CDB$  lies on the horizontal plane as shown in Figure 3(b). It is given that  $\angle ACB = 72^{\circ}$ .



- (i) Find the distance between *A* and *B*.
- (ii) Someone claims that as the angle between plane *ACD* and plane *BCD* varies, the volume of the tetrahedron *ABCD* cannot exceed 2500 cm<sup>3</sup>. Do you agree? Explain your answer.

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

(4 marks)

|                                                   | HIOCK CHAIN PAPER |
|---------------------------------------------------|-------------------|
|                                                   |                   |
| _                                                 |                   |
|                                                   |                   |
| _                                                 |                   |
|                                                   |                   |
| -                                                 |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
| >                                                 |                   |
|                                                   |                   |
| _                                                 |                   |
| <u> </u>                                          |                   |
| ₹.  <br><del>*</del>                              |                   |
| <u>.</u>                                          |                   |
| <del>7</del>                                      |                   |
| . —                                               |                   |
|                                                   |                   |
| <u> </u>                                          |                   |
| <u> </u>                                          |                   |
| Answers written in the margins will not be marked |                   |
| <del>]</del>                                      |                   |
| ?  <br>?                                          |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
| _                                                 |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
| _                                                 |                   |
|                                                   |                   |
| -                                                 | <del></del>       |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |
|                                                   |                   |

19. Let  $f(x) = 3x^2 + 6mx - 12x + 3m^2 - 12m + n$ , where m and n are real constants such that mn < 0. Denote the vertex of the graph of y = f(x) by P. (a) Using the method of completing the square, express the coordinates of P in terms of m and n. (2 marks) (b) Describe the geometric meaning represented by the transforming f(x) to 4f(x-16). (2 marks) (c) Denote the vertex of the graph of y = 4f(x - 16) by Q. Let  $(a_1, b_1)$  and  $(a_2, b_2)$  be the coordinates of P and Q respectively. It is given that  $a_1$ , n-1,  $a_2$  is geometric sequence and  $b_1$ , 3-m,  $b_2$  is an arithmetic sequence. Find the coordinates of *P* and *Q*. (ii) The coordinates of the points R and S are (1-4t, t+9) and (3-2t, 2t+6) respectively, where t is a real number. Is it possible that PQRS is a rhombus? Explain your answer. (8 marks)

Answers written in the margins will not be marked.

|   | тоск ехит рире |
|---|----------------|
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
| · |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |
|   |                |

| моск ехат раре |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
| • 6/2/         |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
| END OF PAPER   |