MOCK EXAM 3 MATHEMATICS Compulsory Part PAPER 2

 $(1\frac{1}{4})$ hours)

INSTRUCTIONS

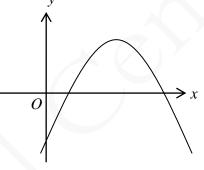
- 1. Read carefully the instructions on the Answer Sheet.
- 2. When told to open this book, you should check that all the questions are there. Look for the words

'END OF PAPER' after the last question.

- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A


1.
$$\frac{(3x^3)^3}{3x^5} =$$

A. 3x.

- B. $3x^4$.
- C. $9x^4$.
- D. $9x^{22}$.
- 2. If 4a 1 = 4(b 5), then b =
 - A. *a* + 1.
 - B. *a* + 4.
 - C. $a + \frac{19}{4}$.
 - D. $a \frac{21}{4}$.

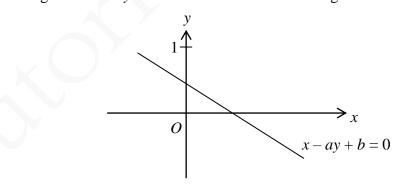
3.
$$pr-qr-ps+qs-pt+qt =$$

A. $(p+q)(r-s+t)$.

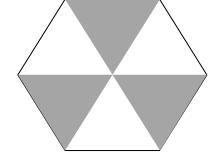
- B. (p+q)(r-s-t).
- C. (p-q)(r-s+t).
- D. (p-q)(r-s-t).
- 4. Let f(x) be a polynomial. When f(x) is divided by x + 2, the remainder is 4. If f(x) is divisible by x 2, find the remainder when f(x) is divided by $x^2 4$.
 - A. -x 2
 - B. -x + 2
 - C. x 2
 - D. *x* + 2

- 5. Let *k* be a constant. Solve the equation (x + k)(x k + 1) = x + k.
 - A. x = k 1
 - B. x = k
 - C. x = -k or x = k 1
 - D. x = -k or x = k
- 6. The figure shows the graph of $y = -x^2 mx + n$, where *m* and *n* are constants. Which of the following is true? *y*
 - A. m < 0 and n < 0
 - B. m < 0 and n > 0
 - C. m > 0 and n < 0
 - D. m > 0 and n > 0

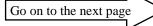
- 7. The solution of $6(x-2) \ge 2(x+4)$ or 25-5x < 10 is
 - A. $x \ge 5$
 - B. $x \leq 5$
 - C. x > 3
 - D. *x* < 3

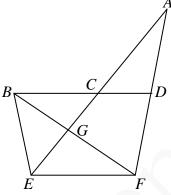

8. If *a*, *b* and *c* are non-zero constants such that $a(x + 1) + b(x + 6) \equiv c(x + 3)$, then a : b = c(x + 3).

- A. 4:7.
- **B**. 7:4.
- C. 2:3.
- D. 3:2.


- 9. If the base radius and the height of a circular cone are decreased by x% and 20% respectively so that its volume is decreased by 71.2%, then x =
 - A. 36.
 - B. 40.
 - C. 60.
 - D. 64.
- A sum of \$30 000 is deposited at an interest rate of 3% per annum for two years, compounded monthly.
 Find the interest correct to the nearest dollar.
 - A. \$1 800
 - B. \$1 825
 - C. \$1 848
 - D. \$1 853
- 11. It is given that y partly varies as x and partly varies inversely as x^2 . When x = 1, y = -7 and when x = 2, y = 7. When x = -2, y =
 - A. -13.
 - B. -7.
 - C. 7.
 - D. 13.
- 12. Peter drives a car from city A to city B for 9 hours. His driving speed for the first 5 hours and the last 4 hours are 54 km per hour and 63 km per hour respectively. Find his average driving speed for the 9 hours.
 - A. 13 km per hour
 - B. 42 km per hour
 - C. 58 km per hour
 - D. 59 km per hour

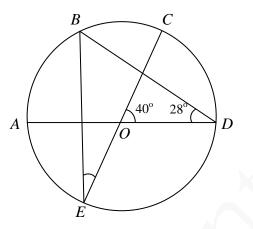
13. $\sqrt{123} =$


- A. 11.090 (correct to 3 decimal places).
- B. 11.09 (correct to 2 significant figures).
- C. 11.0 (correct to 1 decimal places).
- D. 11 (correct to the nearest integer).
- 14. The weight of a pack of flour is measured as 100 kg correct to the nearest kg. If the flour is packed into n bags such that the weight of each bag is measured as 500 g correct to the nearest 5 g, find the greatest possible value of n.
 - A. 196
 - B. 200
 - C. 202
 - D. 204
- 15. The figure shows the graph of the straight line x ay + b = 0. Which of the following are true?
 - I. *a* < 0
 - II. b < 0
 - III. a < b
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

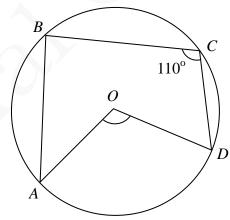

- 16. In the figure, the regular hexagon is divided into six identical isosceles triangles and three of them are shaded. The number of axes of reflectional symmetry of the hexagon is
 - A. 2.
 - B. 3.
 - C. 6.
 - D. 12.

All Rights Reserved

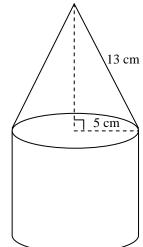
- 17. In the figure, *BEFD* is a trapezium. *C* is a point on *BD* such that BC : CD = 3 : 2. *DF* and *EC* are produced to meet at *A*. It is given that *EF* : *BD* = 9 : 10. If the area of $\triangle ACD$ is 16 cm², then the area of quadrilateral *CDFG* is
 - A. 27 cm^2 .
 - B. 38 cm^2 .
 - C. 65 cm^2 .
 - D. 81 cm^2 .


18. In the figure, $\angle ABD = \angle ADC = \angle BCD = 90^{\circ}$. If $CD = \lambda$, then AB =

19.
$$\frac{\sin 60^{\circ}}{1+\sin(90^{\circ}+\theta)} + \frac{\sin 240^{\circ}}{1+\sin(270^{\circ}+\theta)}$$
A.
$$-\frac{1}{\sin^{2}\theta}$$
B.
$$-\frac{1}{\sin\theta\tan\theta}$$
C.
$$-\frac{\sqrt{3}}{\sin\theta\tan\theta}$$
D.
$$-\frac{\sqrt{3}}{\sin^{2}\theta}$$

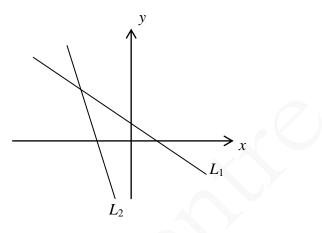

https://www.brightmind.com.hk 5500 1376

20. In the figure, O is the centre of the circle ABCDE. If $\angle COD = 40^{\circ}$ and $\angle ADB = 28^{\circ}$, then $\angle BEC =$


- A. 38°.
- B. 40°.
- C. 42°.
- D. 44°.

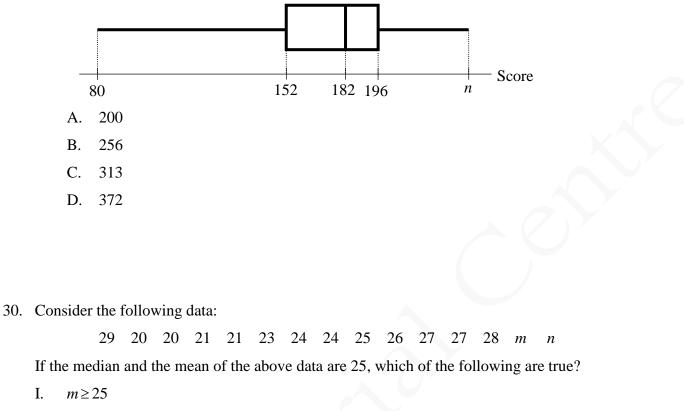
- 21. In the figure, *O* is the centre of the circle *ABCD*. If $\widehat{AB} : \widehat{BC} : \widehat{CD} = 3 : 3 : 2$ and $\angle BCD = 110^\circ$, then $\angle AOD =$
 - A. 84°.
 - B. 96°.
 - C. 112°.
 - D. 136°.

- 22. In the figure, the solid consists of a right circular cone and a cylinder with a common base and the same height. The base radius and the slant height of the cone are 5 cm and 13 cm respectively. Find the total surface area of the solid.
 - A. $180\pi \text{ cm}^2$
 - B. $210\pi \text{ cm}^2$
 - C. $235\pi \text{ cm}^2$
 - D. $400\pi \text{ cm}^2$



- 23. For $0^\circ \le \theta \le 90^\circ$, the largest value of $\frac{5}{2\cos^2\theta + 4\cos^2(90^\circ \theta)}$ is
 - A. 5. B. $\frac{5}{2}$. C. $\frac{5}{4}$. D. $\frac{5}{6}$.
- 24. The coordinates of the point *A* are (-3, 6). *A* is translated downwards 12 units to the point *B*. *B* is then rotated anticlockwise about the origin through 90° to the point *C*. Find the *y*-coordinate of *C*.
 - А. –6
 - B. -3
 - C. 3
 - D. 6
- 25. Denote the circle $5x^2 + 5y^2 + 15x 25y 18 = 0$ by *C*. Which of the following are true?
 - I. The origin lies inside *C*.
 - II. The area of C is less than 40 square units.
 - III. The perpendicular distance from the centre of C to the y-axis is 1.5.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

26. In the figure, the equations of the straight lines L_1 and L_2 are ax + y = b and cx + y = d respectively. Which of the following are true?


I.
$$a > 0$$

- II. a < c
- III. b < d
- IV. ad < bc
 - A. I, II and III only
 - B. I, II and IV only
 - C. I, III and IV only
 - D. II, III and IV only

- 27. Ken has three \$100 banknotes, one \$500 banknote and one \$1 000 banknote in his wallet. If Ken draws out three banknotes randomly from his wallet, find the probability that he gets at most \$1 200.
 - A. $\frac{7}{10}$ B. $\frac{1}{10}$ C. $\frac{9}{10}$ D. $\frac{59}{60}$
- 28. { *b* 8, *b* 5, *b* + 1, *b* + 3, *b* + 7, *b* + 9 } and { *b* 7, *b* 4, *b* 1, *b* + 5, *b* + 6, *b* + 8 } are two groups of numbers. Which of the following is/are true?
 - I. The two groups of number have the same mean.
 - II. The two groups of number have the same median.
 - III. The two groups of number have the same range.
 - A. I only
 - B. II only
 - C. I and II only
 - D. I and III only

29. The box-and-whisker diagram below shows the distribution of the scores in a competition by a group of contestants. If the inter-quartile range of the distribution is one-fourth of its range, find *n*.

- II. m + n = 60
- III. $n \leq 35$

I.

- A. I and II only
- I and III only B.
- С. II and III only
- I, II and III D.

 $y = \log_a x$

 $y = \log_b x$

 \rightarrow_x

 \overline{B}

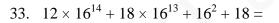
С

L

Section B

31. The L.C.M. of $a^2 - 6a + 9$, $a^2 - 9$ and $a^3 - 27$ is

- A. a-3. B. $(a-3)^2(a+3)(a^2-3a+9)$. C. $(a-3)^2(a+3)(a^2+3a+9)$. D. $(a-3)^3(a+3)(a^2+3a+9)$.
- 32. The figure shows the graph of $y = \log_a x$ and the graph of $y = \log_b x$ on the same rectangular coordinate system, where *a* and *b* are positive constants. If a vertical line *L* cuts the graph of $y = \log_a x$, the graph of $y = \log_a x$ and the *x*-axis at *A*, *B* and *C* respectively, which of the following are true?


v

0

- I. a > b
- II. ab > 1

III.
$$\frac{AC}{BC} = \log_a b$$

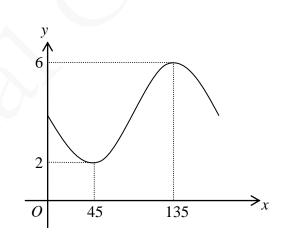
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- A. C12000000022₁₆.
- B. D200000000112₁₆.
- C. C120000000022₁₆.
- D. D200000000112₁₆.

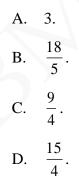
34. If the roots of the quadratic equation $x^2 - 5x + 3 = 0$ are α and β , then $\alpha^2 + 5\beta =$

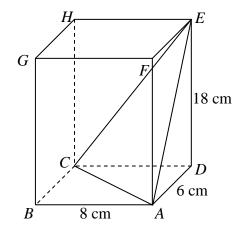
- A. 22.
- B. 12.
- C. –18.
- D. –28.

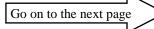
- 35. The real part of $4i + 3i^2 + 2i^3 + i^4$ is
 - A. –2.
 - B. 2.
 - C. –4.
 - D. 4.
- 36. Considering the following system of inequalities:
 - $\begin{cases} x \ge 0 \\ y \ge 0 \\ 2x + 3y \le 30 \\ 3x + y \le 17 \\ 5x + y \le 25 \end{cases}$


Let *D* be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in *D*, then the greatest value of 2y + 3x - 24 is

- А. –6.
- B. 1.
- C. 6.
- D. 10.
- 37. The *n*th term of a sequence is 3n + 4. If the sum of the first *m* terms of the sequence is less than 2016, then the greatest value of *m* is
 - A. 34.
 - B. 35.
 - C. 38.
 - D. 39.


38. If
$$(a^2)^x = b^{\frac{1}{x}}$$
, then $x^2 =$
A. $\frac{b}{2a}$.
B. $2\log \frac{b}{a}$.
C. $\frac{1}{2}\log_a b$.
D. $\frac{1}{2}\log_b a$.


39. The figure shows


- A. the graph of $y = 4 2\sin 2x^{\circ}$.
- B. the graph of $y = 4 2\sin \frac{x^0}{2}$.
- C. the graph of $y = 4 + 2\sin 2x^{\circ}$.
- D. the graph of $y = 4 + 2\sin \frac{x^{\circ}}{2}$.

40. The figure shows a rectangular block *ABCDEFGH*. If the angle between the triangle *ACE* and the plane *ABCD* is θ , then tan θ =

41. In the figure, AB is the tangent to the circle BCDE. If $\angle BDC = 70^{\circ}$ and $\angle BCA = 40^{\circ}$, then $\angle BAE =$

A. 30° . B. 40° . C. 50° . D. 70° . A E F 70° C

42. Find the range of values of k such that the circle $x^2 + y^2 - 3x + 6y + 8 = 0$ and the straight line 2x + 3y = k intersect.

A. $-\frac{25}{2} \le k \le \frac{1}{2}$ B. $-\frac{25}{2} \le k < \frac{1}{2}$ C. $k \le -\frac{25}{2}$ or $k \ge \frac{1}{2}$ D. $k < -\frac{25}{2}$ or $k > \frac{1}{2}$

- 43. There are 13 girls and 9 boys in a singing club. If a team of 6 students is selected from the club to take part in a competition and the team consists of at least one boy, how many different teams can be formed?
 - A. 11 583
 - B. 72 897
 - C. 74 529
 - D. 74 613

- 44. If 7 girls and 2 boys stand in a line randomly, find the probability that the two boys stand next to each other.
 - A. $\frac{1}{9}$ B. $\frac{2}{9}$ C. $\frac{1}{3}$ D. $\frac{1}{27}$
- 45. Let m_1 , r_1 and s_1 be the median, the range and the standard deviation of a group of numbers { x_1 , x_2 , x_3 ,..., x_{50} } respectively. If m_2 , r_2 and s_2 be the median, the range and the standard deviation of a group of numbers { x_1 , x_2 , x_3 ,..., x_{50} , m_1 } respectively, which of the following must be true?
 - I. $m_1 = m_2$
 - II. $r_1 = r_2$
 - III. $s_1 = s_2$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III