MOCK EXAM 4 MATHEMATICS Compulsory Part PAPER 2

 $(1\frac{1}{4} \text{ hours})$

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet.
- 2. When told to open this book, you should check that all the questions are there. Look for the words

'END OF PAPER' after the last question.

- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

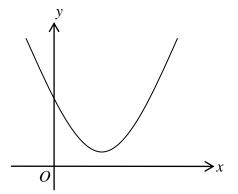
Section A

2.

1.
$$(-3n^2)^{-4} =$$

A. $-\frac{1}{12n^2}$.
B. $\frac{1}{12n^{16}}$.
C. $\frac{1}{81n^8}$.
D. $-\frac{1}{81n^8}$.

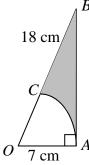
If
$$\frac{a}{2x} + \frac{b}{3y} = 1$$
, then $y =$
A. $\frac{2ax}{3(2x-a)}$.
B. $\frac{2ax}{3(a-2x)}$.
C. $\frac{2bx}{3(2x-a)}$.
D. $\frac{2bx}{3(a-2x)}$.

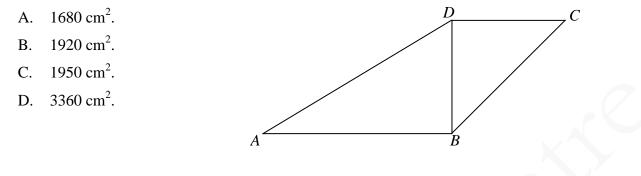

3. $x^2(x-1) - x + 1 =$

A. $(x + 1)^{2}(x - 1)$. B. $(x + 1)(x - 1)^{2}$. C. $x^{2}(x - 1)^{2}$. D. $x^{3} + 1$. 4. Let $f(x) = 3x^3 + kx^2 - 4x - 2$, where k is a constant. If f(x) is divisible by 3x + 1, find the remainder when f(x) is divided by x + 1.

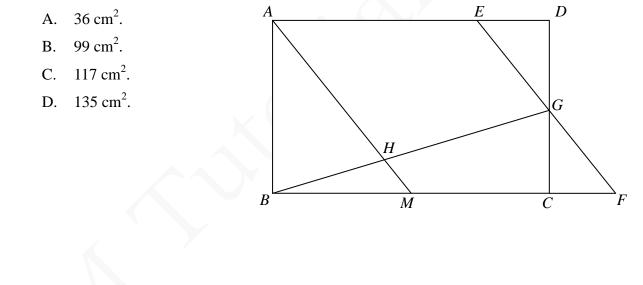
- A. 6
- B. 7
- C. 26
- D. 29

5. If k is a constant such that the quadratic equation $x^2 + kx + 3k + 16 = 0$ has equal roots, then k = 0

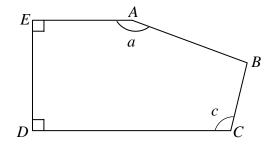

- A. -4 or 16.
- B. -8 or 2.
- С. –8.
- D. 8.
- 6. The figure shows the graph of $y = ax^2 + 2x + b$, where *a* and *b* are constants. Which of the following is/are true?
 - I. a > 0
 - II. b < 0
 - III. ab < 1
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only


- 7. The solution of 2x 18 > 0 and 13 < 2x 3 < 21 is
 - A. x > 8.
 - B. x > 9.
 - C. 8 < x < 12.
 - D. 9 < x < 12.

- 8. The price of 3 digital cameras and 2 mobile phones is \$15 300. If the price of 4 digital cameras and the price of 3 mobile phones are the same, then the price of a mobile phone is
 - A. \$2 550.
 - B. \$2 700.
 - C. \$3 400.
 - D. \$3 600.
- When A sells a product to B, A makes a profit of 25%. When B sells it to C, B makes a profit of 30%. If B makes a profit of \$600, find the profit made by A.
 - A. \$350
 - B. \$400
 - C. \$450
 - D. \$500
- 10. If the surface area of a sphere is increased by 21%, then its volume is increased by
 - A. 31.5%.
 - B. 33.1%.
 - C. 42%.
 - D. 72.8%.
- 11. If α and β are non-zero numbers such that $\frac{3\alpha+2\beta}{\alpha+4\beta} = 2$, then $\frac{3\alpha+9\beta}{4\alpha+6\beta} =$
 - A. $\frac{3}{2}$. B. 1. C. $\frac{9}{10}$. D. $\frac{3}{4}$.


- 12. If 1.04556 < x < 1.04568, which of the following is true?
 - A. x = 1.04 (correct to 3 significant figures)
 - B. x = 1.04 (correct to 3 decimal places)
 - C. x = 1.046 (correct to 4 significant figures)
 - D. x = 1.046 (correct to 4 decimal places)
- 13. It is given that *z* varies directly as the square of *x* and inversely as the square root of *y*. If *x* is increased by 20% and *y* is decreased by 36%, then *z* is
 - A. increased by 56%.
 - B. decreased by 56%.
 - C. increased by 80%.
 - D. decreased by 80%.
- A truck travels at an average speed of 65 km/h for 22 minutes and then it travels at an average speed of 45 km/h for 33 minutes. The average speed of the truck for the whole journey is
 - A. 53 km/h.
 - B. 55 km/h.
 - C. 57 km/h.
 - D. 59 km/h.
- 15. In the figure, *OAC* is a sector of radius 7 cm. *OAB* is a right-angled triangle and BC = 18 cm. Find the area of the shaded region.
 - A. 153.9 cm^2
 - B. 84 cm^2
 - C. 52.5 cm^2
 - D. 31.5 cm^2

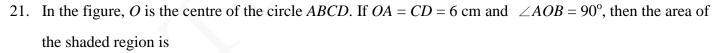
- 16. In the figure, ABCD is a quadrilateral such that AB // CD and $\angle ABD = 90^{\circ}$. If CD = 40, BC = 50 and
 - AD = 78, find the area of quadrilateral *ABCD*.



17. In the figure, *ABCD* is a rectangle. Let *M* be the mid-point of *BC*. *E* is a point lying on *AD*. *F* is a point lying on *BC* produced such that *EF* // *AM*. *CD* and *EF* intersect at the point *G* while *AM* and *BG* intersect at the point *H*. *G* is the mid-point of *CD*. If the area of $\triangle BMH$ is 12 cm², then the area of the trapezium *AEGH* is

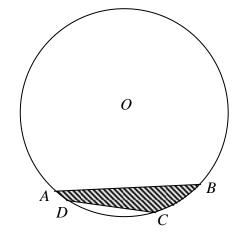
18. In the figure, DE =

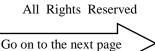
- A. $AB \cos a + BC \cos c$.
- B. $AB \cos a + BC \sin c$.
- C. $AB \sin a + BC \cos c$.
- D. $AB \sin a + BC \sin c$.



x

С


60°

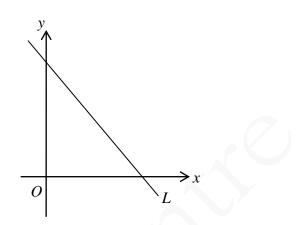

- 19. $[\sin(270^\circ + \theta) + 1][\cos(360^\circ \theta) + 1] =$
 - A. $\sin^2 \theta$.
 - B. $\cos^2 \theta$.
 - C. $-\sin^2\theta$.
 - D. $-\cos^2\theta$.
- 20. In the figure, $\widehat{BC} : \widehat{CD} : \widehat{DA} = 3 : 3 : 4$. If $\angle ABD = 60^\circ$, find x.
 - A. 30°
 - B. 45°
 - C. 60°
 - D. 90°

- A. $(3\pi + 18 9\sqrt{3})$ cm².
- B. $(3\pi 18 + 9\sqrt{3})$ cm².
- C. $(3\pi + 9)$ cm².

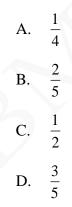
D.
$$(3\pi - 9)$$
 cm²

D

- 22. If an interior angle of a regular *n*-sided polygon is 3 times an exterior angle of the polygon, which of the following are true?
 - I. The value of n is 9.
 - II. Each exterior angle of the polygon is 45° .
 - III. The number of axes of reflectional symmetry of the polygon is 8.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III


- 24. The coordinates of the point *A* are (-3, 6). *A* is rotated clockwise about the origin through 90° to the point *B*. *B* is then reflected with respect to the straight line y = -1 to the point *C*. Find the *y*-coordinate of *C*.
 - A. -5
 - B. -3
 - C. 1
 - D. 4

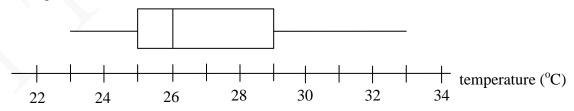
- 24. The coordinates of the points *A* and *B* are (5, 8) and (7, 12) respectively. Let *P* be a moving point in the rectangular coordinate plane such that AP = AB. Find the equation of the locus of *P*.
 - $A. \quad 2x y 2 = 0$
 - B. x + 2y 26 = 0
 - C. $x^2 + y^2 10x 16y + 69 = 0$
 - D. $x^2 + y^2 14x 24y + 173 = 0$


25. The figure shows the straight line L: x + by + c = 0. Which of the following are true?

I.
$$b > 0$$

- II. c > 0
- III. bc < 0
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 26. If the radius of the circle $x^2 + y^2 + 4kx 20y 59k = 0$ is 20, then k =
 - A. 4. B. $\frac{15}{2}$. C. $\frac{15}{2}$ or -10. D. 4 or $-\frac{75}{4}$.
- 27. Two numbers are randomly drawn at the same time from five cards numbered 1, 2, 3, 4, and 5. Find the probability that the sum of the numbers drawn is a prime number.



- 28. The mean weight of 40 teachers and 160 students is 57 kg. If the mean weight of the teachers is 65 kg, then the mean weight of the students is
 - A. 56 kg.
 - B. 55 kg.
 - C. 54.5 kg.
 - D. 53 kg.
- 29. The stem-and-leaf diagram below shows the distribution of the number of English books owned by a class of students.

Stem (tens)	Leaf (units) 6 6 7 8 9 0 1 2 2 3 4 5 5 8 0 1 1 2 2 3 8 9								
0	6	6	7	8	9				
1	0	1	2	2	3	4	5	5	8
2	0	1	1	2	2	3	8		
3	0	2	2	3					

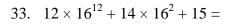
A student is randomly selected from the class. Find the probability that the selected student has no more than 22 books.

- A. 0.24
- B. 0.32
- C. 0.68
- D. 0.76
- 30. The box-and-whisker diagram drawn below shows the distribution of the temperatures in a month. Which of the following is/are true?

- I. The inter-quartile range is 4 °C.
- II. The temperature of the coolest day is 23 °C.
- III. More than half of the days have the temperature higher than 28 $^{\circ}$ C.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

log₃ y

0

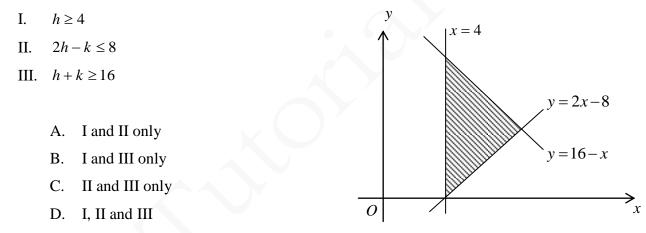

 $>_x$

Section B

- 31. The L.C.M. of $8a^3b^5$, $20a^2b$, $36b^6$ is
 - A. 4*b*.
 - B. $4a^2b$.
 - C. $360a^3b^6$.
 - D. $360a^5b^{12}$.

32. The graph in the figure shows the linear relation between x and $\log_3 y$. If $y = ab^x$, then a =

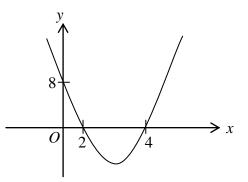
- A. 2.
- B. 4.
- C. 9.
- D. 81

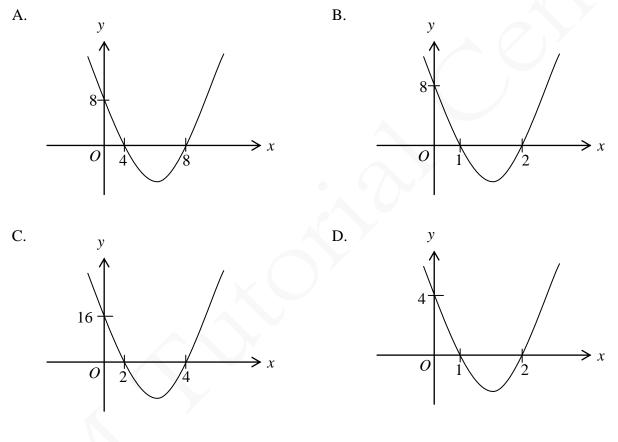

- A. C0000000DE₁₆
- B. $C0000000EF_{16}$
- C. $C00000000D0E_{16}$
- D. C00000000E0F₁₆

34. Let f(x) be a quadratic function. If the coordinates of the vertex of the graph of y = f(x) are (-3, 6), which of the following must be true?

- A. The roots of the equation f(x) = 0 are nonreal numbers.
- B. The roots of the equation f(x) + 3 = 0 are real numbers.
- C. The roots of the equation f(x) + 6 = 0 are real numbers.
- D. The roots of the equation f(x) 6 = 0 are real numbers.

35. Let $u = \frac{2}{a-i}$ and $v = \frac{2}{-a-i}$, where *a* is a real number. Which of the following must be true?

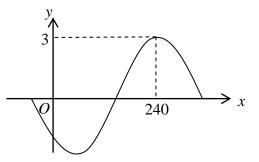

- I. The real part of u is equal to the real part of v.
- II. The imaginary part of $\frac{1}{u}$ is equal to the imaginary part of $\frac{1}{v}$.
- III. uv > 0.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 36. The figure shows a shaded region. If (h, k) is a point lying in the shaded region, which of the following are true?


- 37. Let a_n be the *n*th term of an arithmetic sequence. If $a_{16} = 27$ and $a_{28} = -21$, which of the following are true?
 - I. $a_2 a_1 < 0$

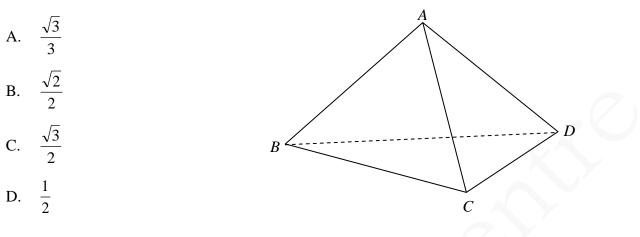
II.
$$a_{21} > 0$$

- III. $a_{12} + a_{13} + a_{14} + \Lambda + a_{33} > 0$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

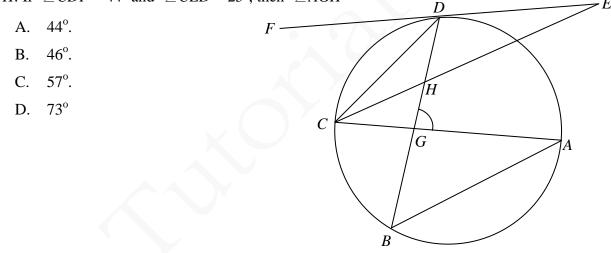
The figure above shows the graph of y = f(x). If g(x) = f(2x), which of the following may represent the graph of y = g(x)?


39. Let *k* be a constant and $-90^{\circ} < \theta < 90^{\circ}$. If the figure shows the graph of $y = k \cos(x^{\circ} + \theta)$, then

A.
$$k = 3$$
, $\theta = 60^{\circ}$


38.

B.
$$k = 3$$
, $\theta = -60^{\circ}$.


- C. k = -3, $\theta = 60^{\circ}$.
- D. k = -3, $\theta = -60^{\circ}$.

40. The figure shows a regular tetrahedron *ABCD*. If the angle between *AB* and the plane *BCD* is θ , then $\cos \theta =$

41. In the figure, AC is a diameter of the circle ABCD. EF is a tangent to the circle at D such that AB // EC. point A. Denote the point of intersection of AC and DB by G and the point of intersection of CE and DB by H. If $\angle CDF = 44^{\circ}$ and $\angle CED = 25^{\circ}$, then $\angle AGH =$

42. If the straight line x - ky - 1 = 0 does not intersect with the circle $x^2 + y^2 + 2ky + 2 = 0$, find the range of values of *k*.

A.
$$-\sqrt{3} < k < \sqrt{3}$$

B. $k < -\sqrt{3}$ or $k > \sqrt{3}$
C. $k = \sqrt{3}$ or $\sqrt{3}$

D. $k > \sqrt{3}$

- 43. There are 15 girls and 12 boys in a singing club. If a team of 3 boys and 5 girls is selected from the club to participate in a singing contest, how many different teams can be formed?
 - A. 360 360
 - B. 660 660
 - C. 2 220 075
 - D. 475 675 200
- 44. In a Mathematics test, John gets 81 marks and his standard score is 2 while Sue gets 60 marks and her standard score is –1.5. Find the standard deviation of the test scores.
 - A. 4.5 marks
 - B. 6 marks
 - C. 8 marks
 - D. 69 marks
- 45. Two sets of numbers are given: $\{x 4, x 2, x, x + 2, x + 4\}$ and $\{y 4, y 2, y, y + 2, y + 4\}$ where x > y. μ_1 and μ_2 are their means respectively and σ_1 and σ_2 are their standard deviations respectively. Which of the following must be true?
 - I. $\mu_1 = \mu_2$
 - II. $\sigma_1 = \sigma_2$
 - III. $\mu_1 > \mu_2$
 - IV. $\sigma_1 > \sigma_2$
 - A. I and II
 - B. II and III
 - C. I and IV
 - D. III and IV

END OF PAPER