MOCK EXAM 9 MATHEMATICS Compulsory Part PAPER 2

 $(1 \frac{1}{4} \text{ hours})$

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B.

The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.

Section A

1.
$$(a+b)(a^2-ab-b^2) =$$

A.
$$(a+b)^3$$
.

B.
$$a^3 + b^3$$
.

C.
$$a^2 - 2ab^2 - b^3$$
.

D.
$$a^3 - 2a^2b - 2ab^2 - b^3$$
.

$$2. \qquad \frac{2x^4}{(2x^2)^6} =$$

A.
$$\frac{1}{6x^2}$$
.

B.
$$\frac{1}{6x^4}$$
.

C.
$$\frac{1}{32x^3}$$
.

$$D. \quad \frac{1}{32x^8}.$$

3. If
$$8x - 3y = 14x + 6y = 60$$
, then $y =$

4. If p and q are constants such that $x^2 - 2x + p \equiv (x - 3)(x + q) - 5$, then p =

- 5. If $a = 5 \frac{6}{b-3}$, then b =
 - A. $\frac{21-3a}{5-a}$.
 - B. $\frac{21+3a}{5-a}$.
 - C. $\frac{21-3a}{5+a}$.
 - D. $\frac{21+3a}{5+a}$.
- 6. $\sqrt{2023}$ =
 - A. 44.97 (correct to 2 decimal places).
 - B. 44.978 (correct to 3 significant figures).
 - C. 44.977772 (correct to 6 significant figures).
 - D. 44.9778 (correct to 4 decimal places).
- 7. The largest integer satisfying the compound inequality -3(x+8)-2>16 or $\frac{4x+1}{3}<7$ is
 - A. 5.
 - B. 4.
 - C. –2.
 - D. -3.
- 8. Let k be a constant. If $f(x) = x^3 kx^2 + k$, then f(k) + f(-k) =
 - A. 0.
 - B. 2k.
 - C. $-2k^3 + 2k$.
 - D. $2k^3 + 2k$.
- 9. Let $f(x) = x^{15} + 3x k$, where k is a constant. If f(x) is divisible by x + 1, find the remainder when f(x) is divided by x 1.

- A. –4
- B. 0
- C. 6
- D. 8

10. The figure shows the graph of $y = -x^2 + mx + n$, where m and n are constants. The equation of the axis of symmetry of the graph is

B.
$$x = 4$$
.

C.
$$x = 5$$
.

D.
$$x = 6$$
.

11. A sum of \$250 000 is deposited at an interest rate of 4% per annum for 5 years, compounded monthly. Find the amount correct to the nearest dollar.

12. If a, b and c are non-zero constants such that $x(x-4a)-2a\equiv x^2-3(bx+c)$, then a:b:c=

13. If z varies directly as x^2 and inversely as y, which of the following must be a constant?

A.
$$\frac{x^2}{yz}$$

$$\mathbf{B.} \quad \frac{x^2 y}{z}$$

C.
$$\frac{x}{y^2z}$$

$$D. \quad \frac{y}{x^2 z}$$

14. In the figure, the 1st pattern consists of 5 dots. For any positive integer n, the (n + 1)th pattern is formed by adding 4 dots to the *n*th pattern. Find the number of dots in the 10th pattern.

- A. 33
- 37 B.
- C. 41
- D. 45
- 15. The base of a solid right pyramid is a rectangle with length 36 cm and width 14 cm. If the height of the pyramid is 24 cm, then the total surface area of the pyramid is
 - 600 cm^2 . A.
 - 1080 cm^2 . B.
 - 1320 cm^2 . C.
 - 1824 cm^2 . D.
- 16. In the figure, ABCD is a parallelogram. E is a point lying on CD such that DE : EC = 4 : 3. AE produced and BC produced meet at F. If the area of \triangle CEF is 18 cm², then the area of the parallelogram ABCD is

- 72 cm^2 . A.
- 80 cm^2 . B.
- C. 98 cm^{2} .
- 112 cm^2 . D.

17. In the figure, ABC and CDE are straight lines. It is given that BC = BD and AD = CD. If $\angle ADE = 94^{\circ}$,

then $\angle ADB =$

- 39° A.
- 41° B.
- 44° C.
- D. $47^{\rm o}$

- 18. In the figure, ABCDEF is a regular hexagon. AE and BF intersect at the point G. Which of the following are true?
 - I. AG = FG
 - $\triangle ABG \cong \triangle FEG$ II.
 - III. BDEF is a cyclic quadrilateral.
 - I and II only
 - I and III only B.
 - II and III only C.
 - D. I, II and III

- 19. In the figure, the area of quadrilateral *ABCD* is
 - A. 234 cm^2 .
 - B. 318 cm^2 .
 - 384 cm^2 .
 - 468 cm^2 . D.

20. In the figure, ABCD is a rhombus. ABE and ACF are straight lines such that AE = AF. If $\angle BEF = 56^{\circ}$,

then $\angle BCF =$

- A. 136°.
- B. 124°.
- C. 112°.
- D. 108°.

21. In the figure, ABCD is a trapezium. C is the centre of the circle BAD. AC and BD intersect at E. If

 $\angle BDC = 38^{\circ}$, then $\angle AEB =$

- A. 57°.
- B. 66°.
- C. 71°.
- D. 76°.

- 22. In the figure, $\frac{AB}{CD}$ =
 - A. $\frac{\cos\beta}{\cos\alpha}$.
 - B. $\frac{\sin \beta}{\sin \alpha}$.
 - C. $\sin \alpha \sin \beta$.
 - D. $\cos \alpha \cos \beta$.

23. In the figure, the equation of the straight line L is ax + by - 20 = 0. Which of the following are true?

II.
$$a < -5$$

III.
$$b > 4$$

- I and II only A.
- I and III only B.
- C. II and III only
- D. I, II and III

24. The coordinates of the points A and B are (1, 2) and (3, -2). Let P be a moving point in the rectangular coordinate plane such that AP = BP. Find the equation of the locus of P.

A.
$$x - 2y - 2 = 0$$

B.
$$x - 2y + 10 = 0$$

C.
$$x - 2y + 18 = 0$$

D.
$$2x - y - 2 = 0$$

25. The coordinates of the point A are (3, -6). A is reflected about the y-axis to the point B. B is then rotated clockwise about the origin through 90° to the point C. Find the x-coordinate of C.

26. The coordinates of the points A and B are (5, 2) and (8, 6) respectively. If P is a moving point in the rectangular coordinate plane such that $\angle APB = 90^{\circ}$, then the locus of P is

- the angle bisector of $\angle AOB$, where O is the origin.
- the straight line which passes through A and B. В.
- C. the perpendicular bisector of AB.
- D. the circle with AB as a diameter.

- 27. The equation of the circle C is $2x^2 + 2y^2 + 8x 16y + 21 = 0$. Which of the following is/are true?
 - I. The centre of *C* lies in the fourth quadrant.
 - II. The origin lies outside C.
 - III. The area of C is 299π .
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 28. Two numbers are randomly drawn at the same time from ten balls numbered 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 respectively. Find the probability that the product of the two numbers drawn is even.
 - A. $\frac{2}{9}$
 - B. $\frac{5}{9}$
 - C. $\frac{7}{9}$
 - D. $\frac{1}{2}$
- 29. The stem-and-leaf diagram below shows the distribution of weights (in kg) of some students in a class.

Stem (tens)	Lea	af (ur	nits)								
1	8 0 0	8	8	9	9						
2	0	1	1	1	2	3	4	4	5	7	8
3	0	0	1	2							

Find the inter-quartile range of the distribution.

- A. 7.5
- B. 8
- C. 8.5
- D. 9

30. The table below shows the distribution of the number of books read by some students in a year.

Number of books read	10	11	12	13	14
Number of students	19	18	22	10	6

Which of the following is true?

- The median of the distribution is 11.
- B. The mode of the distribution is 22.
- The interquartile range is 2. C.
- D. The lower quartile is 11.

Section B

32. It is given that $\log_8 y$ is a linear function of $\log_2 x$. The intercepts on the vertical axis and horizontal axis of the graph of the linear function are 5 and -4 respectively. Which of the following is true?

A.
$$\frac{x^{15}}{y^4} = 2^{60}$$

B.
$$\frac{y^4}{x^{15}} = 2^{60}$$

C.
$$x^4y^{15} = 2^{60}$$

D.
$$x^{15}y^4 = 2^{60}$$

32. If $x - \log y = x^2 - \log y^2 = -3$, then y =

C.
$$\frac{1}{1000000}$$
 or $\frac{1}{100}$.

33. $10010001010001_2 =$

A.
$$2^{13} + 2^{10} + 81$$
.

B.
$$2^{13} + 2^{10} + 161$$
.

C.
$$2^{14} + 2^{11} + 81$$
.

D.
$$2^{14} + 2^{11} + 161$$
.

34. If β is a real number, then the real part of $\frac{3-i^5}{\beta+2i} + i^8$ is

A.
$$\frac{3\beta-2}{\beta^2-4}$$
.

B.
$$\frac{3\beta-2}{\beta^2+4}$$

$$C. \quad \frac{\beta^2 + 3\beta + 2}{\beta^2 - 4}.$$

$$D. \quad \frac{\beta^2 + 3\beta + 2}{\beta^2 + 4}.$$

35. If the figure, PQ and SR are vertical lines. If (x, y) is a point lying in the shaded region PQRS (including the boundary), at which point does 9x - 5y + 4 attain its greatest value?

- 36. The nth term of a sequence is 3n 28. Which of the following is/are true?
 - I. -16 is a term of the sequence.
 - II. The sequence has 8 negative terms.
 - III. The sum of the first *n* terms of the sequence is $\frac{3n^2 53n}{2}$.

37. Let k be a constant. The straight line x + 3y - 12 = 0 and the circle $2x^2 + 2y^2 - 16x + ky + 64 = 0$ intersect at points A and B. If the y-coordinate of the mid-point of AB is 3, find k.

- 38. In the figure, O is the centre of the sector OABC. It is given that OAB is an equilateral triangle. AC and OB intersect at the point D. If OC = 8 cm and $\angle AOC = 90^{\circ}$, find the area of $\triangle ABC$ correct to the nearest cm².
 - 12 cm^2 A.
 - $16 \, \mathrm{cm}^2$ B.
 - 17 cm^2 C.
 - 28 cm^2 D.

39. In the figure, EF is the tangent to the circle at A. If AB is the angle bisector of $\angle DAF$ and CB = CD,

then
$$\angle ABC =$$

- A. 142°.
- 123°. B.
- C. 114°.
- 104°. D.

40. The figure shows a tetrahedron *PQRS* with the base *QRS* lying on the horizontal ground. It is given that Q is vertically below P. If $\angle PRQ = 50^{\circ}$, $\angle PSQ = 66^{\circ}$ and $\angle RPS = 60^{\circ}$, find $\angle RQS$ correct to the nearest degree.

- 120° A.
- 130° B.
- C. $140^{\rm o}$
- 150° D.

- 41. If $\triangle ABC$ is a right-angled triangle with $\angle ABC = 90^{\circ}$, which of the following is/are true?
 - I. The circumcentre of $\triangle ABC$ lies on AC.
 - II. The centroid of $\triangle ABC$ lies outside $\triangle ABC$.
 - III. The in-centre of $\triangle ABC$ lies inside $\triangle ABC$.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 42. There are 6 red balls and 8 blue balls in a bag. If 5 balls are randomly drawn from the bag, find the probability that at most 3 blue balls are drawn.
 - A. $\frac{10}{143}$
 - B. $\frac{34}{143}$
 - C. $\frac{109}{143}$
 - D. $\frac{133}{143}$
- 43. Bag A contains 4 red balls, 4 green balls and 3 blue balls while bag B contains 2 red balls, 5 green balls and 4 brown balls. If one ball is drawn from each bag, then the probability that the two balls drawn are of different colours is

- A. $\frac{28}{121}$.
- B. $\frac{40}{121}$
- C. $\frac{61}{121}$.
- D. $\frac{93}{121}$

- 44. In an examination, the mean score of the examination is 65 marks. The examination score of Jenny is 50 marks and her standard score is -2.5. If the examination score of Sue is 95, then her standard score is
 - A. 4.5
 - 5 B.
 - C. 6
 - D. 6.5
- 45. The median, the interquartile range and the variance of a set of numbers are m, r and v respectively. Each number of the set is multiplied by k and then 3 is subtracted from each resulting number to form a new set of numbers where k is a positive number. Which of the following is/are true?
 - The median of the new set of numbers is km 3. I.
 - II. The interquartile range of the new set of numbers is kr - 3.
 - III. The variance of the new set of numbers is kv 3.
 - A. I only
 - B. II only
 - C. I and III only
 - II and III only D.